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Boundary absorption causes a depletion of contaminant. Since the boundary tends 
to  be the region of lowest velocity and of strongest shear, the remaining contaminant 
experiences on average an increased advection velocity, a reduced rate of shear 
dispersion, and a tendency to develop skewness towards the rear. Here it is shown 
how all these effects can be incorporated into a delay-diffusion description of the 
longitudinal dispersion process (Smith 1981). It is the accurate reproduction of 
the skewness that permits a delay-diffusion equation to become applicable a t  an 
earlier stage than the more conventional diffusion-equation models for longitudinal 
dispersion, and before there has been an undue loss of contaminant through the 
boundary. 

1. Introduction 
In  studies of shear-flow dispersion it often suffices to know bulk one-dimensional 

quantities rather than the detailed three-dimensional concentration distribution. 
Conventionally, this has led to model equations for the cross-sectionally averaged 
concentration C ( s ,  t )  (Taylor 1953). It has long been recognized that when there is 
cross-stream transport, for example the vertical drift of heavy particles, there can 
be substantial concentration variations across the flow (Aris 1959). However, the final 
model equations for longitudinal dispersion have nevertheless been obtained from a 
direct cross-sectional average of the full equations (e.g. Sankarasubramanian & Gill 
1973, equations (6), (7)).  

De Gance & Johns (1978q b )  have shown that for a one-dimensional diffusion model 
of longitudinal dispersion there is a mathematically preferred transverse average in 
which the coefficients take the simplest form. The weight function $,(y, z )  for this 
preferred average is the lowest mode for the decay of transverse concentration 
variations. Equivalently, $,( y, z )  is the shape of the asymptotic concentration profile 
across the flow : 

e - c,(z, t )  $,(y, z )  as t +  co. (1 .1)  

Thus at  large times after discharge the relative importance given to different parts 
of the flow varies as $;. One factor arises as the weight function and the second factor 
comes through the concentration profile across the flow. 

Recently, Lungu & Moffatt (1982) have also identified a mathematically preferred 
average F0(K, y, z )  in the Fourier-transform plane. In the limit of small wavenumber 
(K+O) their preferred average becomes the same as the weighting $,(y, z )  advocated 
by De Gance & Johns (1978a, b ) ,  and again leads to a diffusion approximation for 
the longitudinal dispersion. 
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Although a diffusion model is valid on a sufficiently large length- or timescale, the 
author (Smith 1981) has shown that a telegraph or delay-diffusion equation can 
accurately reproduce the non-Gaussian longitudinal concentration distributions 
observed a t  moderately large times (Elder 1959, figure 4;  Gill & Ananthakrishnan 
1967, figure 5;  Jayaraj & Subramanian 1978, figure 4). Here the preferred average 
identified by De Gance & Johns f 1978a, b )  is used to  extend the delay diffusion model 
to  incorporate the effects of absorption at boundaries. 

The physical origin of the skewness lies in the relative profiles of velocity and 
concentration across the flow. For example, when there is strong boundary absorption 
most of the contaminant will be in the faster-moving part of the flow well away from 
the boundary. Thus the small amount of contaminant near the boundary will tend 
to be left far behind as an extended tail (i.e. negative skewness). This effect is 
particularly noticeable for Poiseuille pipe flow (see 35) ,  since in the absence of 
boundary absorption there is a forwards tail (Taylor 1953, figure 6 ;  Gill & Anantha- 
krishnan 1967, figure 5). 

2. Transverse-diffusion eigenmodes 
We write the full equations for the three-dimensional concentration c ( z ,  y, z ,  t )  : 

a , c + u ( y , z ) a , c - K ( y , z ) a ~ c - v . ( K ~ C )  = q ( x , y , z , t ) ,  (2 . la)  

Kn*Vc+P(y ,z )c  = 0 on CIA. (2.lb) 

Here u ( y , z )  is the longitudinal velocity, K ( Y , Z )  the diffusivity, V the transverse 
gradient operator (0, ay, a,), q(x, y, z ,  t )  the source strength, aA the boundary, n the 
outwards normal, and p(y, z )  a first-order reaction coefficient. The wall mechanism 
can be thought of as being catalytic reaction, deposition, transport across a 
semipermeable membrane, or heat conduction. 

The eigenmodes $.,(y, z )  for the decay of concentration variations across the flow 
satisfy the equations 

with 

with 

V .  (KV$m) + A m  $m = 0, (2.2a) 

Kn-V$, +P$., = 0 on aA. (2.2b) 

The eigenvalues $,  are all real, and, without loss of generality, we can normalize 
the modes 

where the overbars denote cross-sectional average values. The lowest mode is of 
particular importance since it is the asymptotic profile for the concentration 
variations across the flow a t  large times after discharge, i.e. because of their larger 
eigenvalues the higher modes decay away much more rapidly. 

In  terms of the eigenmodes we represent the source strength q :  

a3 

Q("+ Y, 2, tf = ~ o ( ~ 2  t )  $ o b >  z )  + C qm(x2 t )  $m(Y> 2). (2.4) 
m - 1  

Also, for later use we define the velocity and diffusivity coefficients 
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The author (Smith 1981, equation ( 3 . 6 ) )  has given an alternative formula for the 
velocity coefficients when Reynolds' analogy is applicable (i.e. when there is a 
constant ratio between the diffusivity K and the viscosity v). The generalization to 
encompass boundary absorption is 

(2 .7a )  

(2.7 b)  

where A is the cross-sectional area, and U is any convenient reference velocity. 

3. Longi tudinal-dispersion equation 
I n  order to exploit the advantages of the mathematically preferred average (De 

Gance & Johns 1978a, § 3 . 2 c ) ,  we choose the dependent variable to be the amplitude 
co(x, t )  of the lowest mode ?,b0(y, z )  : 

co(x,  t )  = &. (3 .1 )  

Thus in solving (2 .1  a ,  b)  we try to relate the three-dimensional concentration 
distribution c(x, y, z, t )  to the past and present values of co, qo and qm. 

As explained by Taylor (1953) ,  the non-uniform velocity advects and rotates 
longitudinal gradients a, co to generate transverse gradients. I n  opposition to this, 
the combined effects of diffusion and boundary absorption are to erode the concen- 
tration variations towards the equilibrium profile $o( y, z) .  A representation which 
qualitatively reproduces this gradual advected process, and includes the fading 
influence of the discharge distribution across the flow, is 

1 c o w  

+ m - l j - 0  Z Z Jmfmj(y,z,7)LV,ym(x- 0 r ~ m ( d ) d 7 / ,  0 t -7  d7 (3 .2 )  

(Smith 1982, equation ( 2 . 3 ) ) .  Here l j ,  f r n j  are memory functions and w m ( 7 )  are memory 
displacement velocities. We remark that for a two-layer flow the series terminates 
after the first terms Z,, f lo  (Thacker 1976). 

Continuing as in De Gance & Johns (1978a,  §3 .2c ) ,  the one-dimensional equation 
governing the evolution of co(x , t )  is chosen to be the $, component of the full 
equations (2.1 a ,  b ) .  Using the representation (3 .2 )  for c (x ,  y, z ,  t ) ,  we obtain the 
integrodifferential equation 

a, co + A, c0 + uoo a, co - KO0 a: co 

It is the simple form of the co and axeo coefficients that  is the principal feature of 
this particular weighted average. By contrast, Sankarasubramanian & Gill (1973, 
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equation (8)) use a direct cross-sectional average and they have to contend with 
time-dependent coefficients for c, a, c as well as for the higher derivatives. 

The lowest-order truncation of (3.3) which includes the effects both of velocity shear 
and of discharge non-uniformity is the delay-diffusion equation 

a, Co + ho Co + Uoo ax Co - KO0 a: CO 

\ 

= qo- C, J L?7Xmaxqm(2- JOvm(~’)d7‘ ,  t-7 
m-1 o 

(3.4) 

-~ with 
a,D = -u4 $0,  a r x m  = ufmo $0 .  (3.5) 

Here D is the shear-dispersion coefficient and X, is the centroid displacement 
associated with an mth-mode discharge. For a two-layer flow this truncated equation 
is exact. Except for the decay term hoco, (3.4) is formally identical with that derived 
by the author (Smith 1982, equation (1.6)) for longitudinal dispersion with 
impermeable boundaries (see also Maron 1978). However, from the occurrence of the 
eigenmodes @o, ~m in the definitions (2.4)-(2.6) and (3.5), we see that the coefficients 
g o ,  uoo, K ~ ~ ,  a, D ,  a, X m  are all modified by the boundary absorption. 

It is easy to confirm that, in accord with the work of Sankarasubramanian & Gill 
(1973), of De Gance & Johns (1978a), and of Lungu & Moffatt (1982), co(x,t) 
eventually evolves as per the constant-coefficient diffusion equation 

00 

at co + ho co + uoo a, co - C K ~ ~  + D ( a  11 a; co = qo - C, X m (  a) a, Qm. (3.6) 

To transfer the a:co factor outside the integral in (3.4) it  is necessary that the 
timescale for concentration variations greatly exceeds the memory timescale 1 /Al .  
A more stringent requirement is that the lengthscale greatly exceeds the displacement 
distance 

m-1 

At large times after discharge the lengthscale of the contaminant distribution grows 
as ti. Thus the error in approximating the delay-diffusion equation (3.4) by the 
diffusion equation (3.6) decays as t-i. This slowly decaying error is associated with 
the skewness (Chatwin 1970). 

4. Evaluating the coefficients 
To evaluate the coefficients a,D, a,Xm and to optimize the choice for the 

displacement velocities w ~ ( T ) ,  21,(7) we need to determine the functions I,, f m o ,  I,, f m o .  
Fortunately, the necessary analysis parallels that  given previously by the author 
(Smith 1981, 1982). 

The evolution equation (3.3) permits us to eliminate explicit t-derivatives in favour 
of 2-derivatives. Thus, using the representation (3.2), all the terms in the full 
equations (2.1 a ,  b )  can be written as series of integrals of 2-derivatives (Smith 1982, 
equation (3.4)). Equating successive coefficients of 3!co and 3?qm to zero yields the 
equations satisfied by the memory functions l j ,  fmi  : 

aT1,-V.(KV~,) = 0, (4.1 a )  
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with 
1, = (uoo -u) k0 a t  7 = 0, (4.1 b) 

K?l'Vl,+pl, = 0 on aA;  (4.1 c) 

with 
( 4 . 2 ~ )  

(4.2b) 

K?l.Vfmo+/3fmo = 0 on aA; ( 4 . 2 ~ )  

( 4 . 3 ~ )  

1, = ( K - K ~ ~ ) ~ ~  a t  7 = 0, (4.3b) 

a 7 1 , - V . ( K V 1 2 )  = 'uo(7) I ,+  (k04  ko-ul,), 
with 

K?l'Vl,+pl, = 0 on aA;  (4.3c) 

with 

Equations (4.1)-(4.4) only differ from their counterparts in Smith (1981, 1982) by 
the presence of k0. This change is exactly correct to compensate for the fact that  the 
lowest mode is no longer constant. Hence the solutions for l i , fmj  can be inferred 
directly from the solutions given by Smith (1981, equations (3.3), (4.2), (4.4); 1982, 
equations (4.3), (4.6)) : 

n + O  

We can now evaluate the weighted averages (3.5) to obtain the results 

00 

a7D = E ~ ~ ~ e x p ( - - A , 7 ) ,  
m = 1  

(4.9) 

a7Xm = umoexp(-Am7). (4.10) 

Again we remark that in other weighted averages the counterparts to (4.9) and (4.10) 
are much less elegant. Indeed, Sankarasubramanian & Gill (1973) do not give explicit 
formulae for their time-dependent coefficients K,(t), K,(t). De Gance & Johns (1978a, 
$3.1 and table 1) give the formidable expressions from which K,, K ,  can be computed. 

The delay-diffusion equation (3.1) is equivalent to truncating the representation 
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(3.2) for c(x, y, z ,  t )  at the a, co and qm terms. The truncation is a t  its most accurate 
when the inclusion of the subsequent aico and azqm terms make a minimal change 
to c(x, y, z ,  t ) .  From Smith (1982, equation (5.5)) we infer that this is achieved if 

(4.1 1 a,  b )  1 2 ( ~ - ~ 0 0 )  $0 = 0, f m l  $m = 0. 

If we make the large-Pkclet-number approximation 

(4.12) 

then (4.11 a, b )  lead us to choose the memory velocities 

a7 D J ~ ~(7') d7' = 7 z urn, uk0 exp ( - A ,  7) 
0 m = 1  

1, (4.13) 
exp ( - A m  7 )  -exp ( - A n  7 )  

A n -  Am 

m 

+ I= X U m o U n o ~ m n  
m = 1  n =k m 

n + O  

We remark that shear dispersion is important precisely because most flows do have 
large Pdclet numbers. Fife & Nicholes (1975) show that, in the opposite limit of small 
PBclet number, the diffusive limit (3.6) is achieved almost immediately (within a 
travel distance much less than the flow diameter) and the shear-dispersion coefficient 
D(o0) is much less than the diffusion term K ~ ~ .  

mode (i.e. qm = 0), then the constraint 
( 4 . 1 1 ~ )  upon I ,  ensures that the first neglected term in (3.3) involves sic,. Taking 
moments of (3.3) we can readily infer that this term does not contribute to the area, 
centroid, variance or skewness. Thus all these moments are reproduced exactly by 
the model equation (3.4). For more general discharges the first neglected term 
involves aiq, .  Hence only the area, centroid and variance are exact. However, the 
dominant (growing) contribution to the third moment is associated with the 
left-hand-side terms. Therefore the skewness is asymptotically correct, and the 
dominant error is associated with the spikiness (kurtosis). This error decays a t  the 
rate t-l. 

A similar argument applies to the diffusion model derived by Sankarasubramanian 
& Gill (1973, equations (8), ( l l)) ,  i.e. that the area, centroid and variance are exact. 
The advantages of the present approach (3.4)) are that the coefficients are simpler, 
the non-Gaussian character (i.e. persistent skewness) of the concentration distribution 
is revealed, and the linear superposition property is correctly reproduced (Smith 
1982). 

If the discharge conforms exactly to the 

5. Boundary absorption in Poiseuille pipe flow 

eigenmodes are Bessel functions 
In  a circular pipe of radius a and with constant molecular diffusivity K the diffusion 

with 
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Asymptote 5.18 6r 

Y . n 

x 
W c 
E 
E: 
.e 
c Asymptote 2.41 
W . . . . . . . 
c 

I 
10 

Wall-reaction parameter, Oa/K 

FIGURE 1.  The attenuation rate A, for pipe (-) and plane ( ’ . . . . .) Poiseuille flow as a 
function of the boundary absorption rate. 

where J ,  is the zeroth-order Bessel function of the first kind. Figure 1 shows the 
attenuation rate A, as a function of the wall-absorption parameter /3 (see also 
Sankarasubramanian & Gill 1973, figure 2 ;  Lungu & Moffatt 1982, figure 1 ) .  As we 
might expect, A, is a monotonic increasing function of!. Indeed, for small dimensionless 
reaction rate B = ap/K there is direct proportionality: 

A, - ~ K B ,  y i  - 2B for B = - < 1 .  (5.3) 
K 

However, for large a/3/K the attenuation rate asymptotes to a constant. As explained 
by Sankarasubramanian & Gill (1973), it is the finite concentration gradient which 
limits the diffusive flux of contaminant towards the boundary. The main effect of 
the eficient removal of contaminant at the boundary is, therefore, to bring the 
concentration close to  zero a t  the boundary. 

For laminar flow with constant viscosity the velocity profile is parabolic : 

u =  2 a [ 1 - ( ; J ] .  (5.4) 

Using the formulae (2 .7a,  b ) ,  or the integrals (4 .8a,  b )  evaluated by Sankarasubra- 
manian & Gill (1973, 1975), we find that the velocity coefficients (2 .5)  are given by 

1 3  

(yL  - 2B)2+ y& B2 

3rYk + B21 YL 
urn, = @ { l +  (5.5)  

Figure 2 shows the advection velocity uoo as a function of the wall-absorption 
parameter p (see also Sankarasubramanian & Gill 1973, figure 3 ;  Lungu & Moffatt 
1982, figure 1 ) .  We observe that uoo is an increasing function of p. Again the 
explanation of this fact was given by Sankarasubramanian & Gill (1973) : the effect 
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o.6 r Asymptote 0.564 

, 

10 

Wall-reaction parameter, @/K 

FIGURE 2. The advection velocity uoo for pipe (-) and plane (. . . . . .) Poiseuille flow as a 
function of the boundary absorption rate. 
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FIGURE 3. Exact (-) and telegraph-equation approximations (---) to the memory function 
a, D for Poiseuille pipe flow with boundary absorption. 

of the wall reaction is to deplete solute in the slower-moving wall region, and therefore 
the solute distribution is weighed in favour of the faster-moving central region. 

As /3 increases from zero to infinity, the boundary condition (2 .26)  changes from 
zero flux to zero concentration, and the eigenfunctions $m advance from m to m+g 
oscillations. This more oscillatory character is associated with increased eigenvalues 
A,, and with decreased velocity coefficients u,,, (i.e., as /3 increases, the velocity 
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FIGURE 4. Velocity shift vo-uoo for Poiseuille pipe flow, showing the tendency towards negative 

values when there is strong boundary absorption. 

profile, with its zero value at the wall, more closely resembles the lowest mode k0). 
Thus, from the formula (4.9) we infer that the wall absorption causes the memory 
function a, D to fade away more rapidly and to have a small magnitude than in the 
j3 = 0 case. These features are clearly apparent in figure 3. Yet again, a physical 
explanation for the reduced dispersion was given by Sankarasubramanian & Gill 
(1973) : since velocity gradients are smaller in the central region of the tube than 
near the wall, and larger velocity gradients across the solute distribution cause 
larger axial dispersion, the result is a decrease in axial dispersion. 

It deserves emphasis that, although the qualitative features are in accord with the 
work of Sankarasubramanian & Gill (1973), there are quantitative differences of order 
20% (De Gance & Johns 19783, figures 1, 2, 4, 7 ) .  It is only at  large times that the 
concentration profile across the flow settles down to the shape e0(y, 2). Thus in the 
area-averaged results there are transient contributions from the higher modes +,. 
These give rise to time dependence in the apparent attenuation rate and advection 
velocity, as well as to differences in the dispersion coefficient. Hence the mathematically 
preferred weighted-average results are simpler in character as well as in mathematical 
form. 

The new feature of the delay-diffusion equation is that it goes on one stage further 
to encompass the third moment or skewness of the concentration distribution. The 
skewness is positive or negative according to whether the memory velocity w0(7) is 
greater or less than the advection velocity uoo (Smith 1981, equation (4.9)). Figure 
4 shows that for Poiseuille pipe flow the effect of boundary absorption is to reduce 
or even to change the sign of the skewness. At  small times we have the exact result 

(5.7) 

i.e. vo-uoo is a weighted average of the shifted velocity profile u(y , z ) -uoo .  Since 
boundary absorption increases uoo (see figure 2 ) ,  it follows from (5.7) that vo - uoo tends 
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FIGURE 5. Exact ( .  . . . . .) and telegraph-equation approximations (---) to the memory 
function a, D for plane Poiseuille flow with boundary absorption. 
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FIGURE 6. Velocity shift v,,-u,,,, for plane Poiseuille flow, showing the increased tendency for 
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to be decreased. A physical explanation of this tendency towards negative skewness 
was given in the introduction (i.e. the small amount of slow-moving contaminant near 
the wall gets left behind as a trailing tail). 

6. Plane Poiseuille flow 

plane Poiseuille flow : 
As a second illustrative example we follow Lungu & Moffatt (1982), and consider 

U ( Y )  = @[ 1 -(!>'I 1 (6.1) 

where 
relevant eigenmodes and coefficients are 

is the bulk velocity and 2a is the separation between the boundaries. The 

with 
A,=-, Yk K 

a 
y m t a n y m =  B=*, 

K 

(6.2a) 

(6.2 b, c )  

( 6 . 2 d )  

The dotted curves in figures 1 and 2 show the attenuation rate A, and the advection 
velocity uoo as functions of the dimensionless absorption parameter B = up/. (see 
also Lungu & Moffatt 1982, figure 1 ) .  The systematically lower results for A, and uoo 
than in the pipe-flow case can be attributed to the fact that  for the plane geometry 
there is only half as much boundary per unit cross-sectional area. For example, 
instead of the asymptote (5 .3) ,  we now have 

(6 .3)  
A , - K B ,  y : - B  for B = - < l .  aP 

K 

Figure 5 shows the memory function a,D for plane Poiseuille flow. The decay 
timescale is somewhat longer than in the pipe-flow case. However, the general 
features are in accord with figure 3 (ix. more rapid decay and smaller magnitude as 
the wall absorption increases). 

I n  the absence of boundary absorption the contaminant distribution in plane 
Poiseuille flow has negative skewness (Jayaraj & Subramanian 1978). Thus, even 
without boundary absorption the memory velocity V,(T) is less than the advection 
velocity uoo (Smith 1981, figure 6 ) .  Figure 6 confirms that this lagging behind becomes 
even more exaggerated when there is boundary absorption. We remark that for very 
large p there is so little contaminant close to the wall that  there is a slight reversal 
in the trend towards increased skewness. 

7. Telegraph equation 
If we introduce the auxiliary function g ( y ,  z ) ,  

with 
(7 .1  a )  

(7.1 b ,  c )  
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then we can derive the integral identities 

(7.2a, b )  

( 7 . 2 ~ )  

Physically g(y, z )  is the perturbation from the asymptotic concentration profile 
$o(y, z )  a t  large times after discharge. 

Simple approximations to  al D and uo( r )  which preserve the above identities are 

(7.3a, b )  a , I )=pD(a)exp(-p7)  with p = & ,  @ us 

g2 

( 7 . 3 4  

(Smith 1981, equations (5.4)-(5.9)). This can be thought of as being a one-mode 
approximation to the series (4.9)-(4.13), with the coefficients p, D ( a ) ,  uo adjusted to 
achieve the best possible results at moderate to  large times after discharge. 
Equivalently, the actual flow is approximated by two well-mixed layers with 
velocities (Smith 1981, equations (5.11)) 

(7.4) u* = B(U0, +%) f { (p-  Ao) D ( a )  +t(% -u,,)”i. 

For the right-hand-side terms in the delay-diffusion equation (3.4), we note the 
identity 

Thus at moderately large times after discharge there is no need for us to know the 
individual modal contributions q,(z, t )  to the discharge shape, and the summation 
on the right-hand-side of (3.4) can be replaced by the approximation 

The outcome of the above approximations (7.3) and (7.6) is that the delay-diffusion 
equation (3.4) can be transformed to a telegraph equation 

(a, + 210 a, +PI (8, + uoo a, + A 0  - KO0 a 3  co -@(a) a; co = (a, + uo a, + P )  qo-p a,(@)> 
(7 .7)  

(Smith 1982, equation (6.9)). By construction this equation inherits from the 
delay-diffusion equation (3.4) the properties that  the area, centroid, variance and 
skewness are all asymptotically correct. 

We remark that for a delta-function discharge, and with longitudinal diffusion 
negligible, the telegraph equation has an explicit solution. Thus, except for the 
attenuation factor exp ( -Ao t ) ,  and the systematic replacement of ,u by p - A,, the 
concentration profiles are precisely as illustrated in Smith (1981, figure 1 ;  1982, 
figure 3). At small times these profiles have the unrealistic feature of concentration 
spikes which move at the layer velocities %+,up. However, these spikes decay 
exponentially fast on the memory timescale l/(p-Aho). In effect, this is the timescale 
on which modes other than @,(y,z) can be ignored, and knowledge of co(x, t )  alone 
gives a good indication of the full concentration dist,ribution 

c(z,  y, 2 ,  t )  - co(z, t )  $o(y, 2 )  for (P- A,) t + 1 .  (7.8) 
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0.02 

I Asymptote 0.0024 

I 
10 

Wall-reaction parameter, ~ U / K  

FIGURE 7. The long-term dispersion coefficient D(co)  for pipe (-) and plane ( .  . . . . . )  
Poiseuille flow as a function of the boundary-absorption rate. 

Even a t  times as large as ( p - h o ) t  = 15, the telegraph equation solutions are 
noticeably skew. It is this very persistent skewness (Chatwin 1970) that  permits the 
telegraph equation (5.7) to  be accurate long before the diffusion equa.tion (3.6), even 
though formally both model equations are large-time asymptotes. 

8. Tests of the one-mode approximation 

the lowest mode ko (see (5.1)), and the shape function g :  
To apply the telegraph-equation analysis to pipe flow, we need to calculate both 

In principle, Schaftheitlin's reduction formula (Watson 1966, equation (5.14)) 
permits all the Bessel-function integrals k0 uy, g2, uga to be evaluated explicitly. This 
was done using an algebraic-manipulation computer program (CAMAX,). Alas, the 
resulting expressions were found to be far too lengthy to be worthy of publication. 
The numerical results for D ( ~ o ) ,  ,u and vo-uoo are shown in figures 7, 8 and 9 (see 
Sankarasubramanian & Gill 1973, figure 4). As noted in $5 ,  wall absorption tends t o  
reduce the longitudinal dispersion, reduce the memory timescale, and to change tlre 
sign of the skewness from positive to negative. The dashed curves in figure 3 reveal 
the accuracy of the one-mode approximation ( 7 . 3 ~ )  for a, D. The error is imperceptible 
for the B = 5,  B = 00 curves. 

For plane Poiseuille flow the shape function g(y)  takes the form 
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FIGURE 8. Memory decay rate p for the telegraph-equation approximation to pipe (--) and 
plane ( - . . . . .  . )  Poiseuille flow when there is boundary absorption. 
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Again, the explicit formulae for $,uq, g2, ug2 are extremely lengthy (see Lungu & 
Moffatt 1982, equation (45)). The dotted curves in figures 7-9 show the numerical 
resultsforD(oo),pandv,-u,, (seeLungu& Moffatt 1982, figure 1). Thedashedcurves 
in figure 4 again show the high level of accuracy of the one-mode approximation for 
a, D. 

The ultimat,e test of either the delay-diffusion equation (3.4) or the telegraph 
equation (7.7) is to see how accurately they reproduce the actual concentration e,(x, t ) .  
To do this the full equation (2.la,  b) were solved numerically for a uniform discharge 
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FIGURE LO. Exact (-), delay-diffusion ( + + + ), Gaussian ( .  . . . . .) and telegraph-equation 
(---) concentration profiles in plane Poiseuille flow. 

in plane Poiseuille flow. The appropriate values of the coefficients qm in the 
representation (2.4) of the source profile are 
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Figure 10 shows the exact, Gaussian, telegraph and delay-diff'usion concentration 
profiles at the times 

tK  U a  
- = 0.1,0.4 with B = lo3, - - - 5 x lo4, i.e. (p-A,) t TZ 2 , s .  (8.4) 
a2 K 

A distinctive feature of the exact results is the skewness, very much more than in 
the case of zero boundary absorption (Jayaraj & Subramanian 1978, figures 3, 4 ;  
Smith 1982, figure 2 ;  Smith 1981, figure 7). This persistent skewness is well 
represented by the delay-diffusion and telegraph-equation solutions. Which is, of 
course, what these model equations were designed to  do. 

9. Limits of applicability 
Fischer et al. (1979, s5.5) have drawn attention to  a contradiction inherent in the 

application of diffusion equation models for decaying substances. With minor 
modification their argument can be applied to  boundary absorption. If the absorption 
is weak then i t  suffices that allowance is made for the slow exponential leakage of 
the contaminant. There is no need to  calculate the advection velocity uoo and the 
longitudinal-dispersion coefficient D(co) since the values can be taken to be those 
appropriate for impermeable boundary conditions. If instead the absorption is strong, 
then the contaminant concentrations decay rapidly on a timescale not very much 
longer than that for cross-sectional mixing (compare figures 1 and 8). However, the 
persistent skewness means that i t  takes many multiples of the timescale for 
cross-sectional mixing for the diffusion equation to become valid. Thus there are two 
possibilities : either the boundary absorption has negligible effect on the advection 
velocity uoo and on the shear dispersion coefficient, D(co),  so the new calculations 
including boundary absorption are not necessary; or else nearly all the contaminant 
has been removed from the flow before the diffusion model has become applicable. 

Fortunately, the full force of the above argument does not apply to  the delay- 
diffusion or telegraph-equation models. Since the skewness is asymptotically correct, 
these model equations are applicable long before the diffusion model (3.6). It suffices 
that the concentration profile across the flow has settled down close to its asymptotic 
shape @,(y, z ) ,  and that any exaggerated (two-layer) spikiness no longer dominates 
the longitudinal concentration distribution. A reasonable criterion for both these 
requirements is 

i.e. intermediate between the cases shown in figures 10(a, b ) .  

@-A,) t > 4 (exp ( -4 )  = 0.02), (9.1 ) 

For heat in water with 

K = 1.4 x em sl, a = 0.5 em, j3 = co ( 9 4  

t >  2 8 s  or t > 36 s. (9.3) 

the necessary lapse of time for pipe or plane Poiseuille flow respectively is 

I n  a household setting, the model equations are adequate to describe the transient 
behaviour in the pipework of a hot-water central-heating system, but not the more 
rapid temperature changes associated with the turning on of a hot-water tap. 

I n  the very worst case, of pipe flow with j3 = 00, 2 of the contaminant remains in 
the flow by the time that the criterion (9.1) has been met. By contrast, the diffurrio1i 
model of Sankarasubramanian & Gill (1973), as improved by De Garice & Johns 
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(1978a, b) ,  requires four times as long as to achieve a comparable level of accuracy 
(i.e. with a skewness error of order [ (p- A,) t]-4 as compared with a kurtosis error of 
order [(,u-Ah,) t1-l). Thus there would only be about a fortieth of the contaminant 
left in the flow. 

When the flow cross section does not conform to some analytically convenient form, 
the cross-sectional eigenvalue problem (2.2a, b )  would need to be solved numerically. 
I n  such a case the one-dimensional delay-diffusion equation loses its computational 
advantage of the full advection-diffusion equations (2.1 a, b ) .  It is for such circum- 
stances that the simpler telegraph equation model is pertinent. One possible example 
would be dispersion in rivers or estuaries with side pockets. I n  keeping with the above 
results (figures 10a, b ) ,  the retention of contaminant in side pockets is associated with 
marked skewness of the longitudinal concentration distribution (Nordin & Troutman 
1980). 

I wish to thank the referees for their constructive comments, and British Petroleum 
and the Royal Society for financial support. 
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